jueves, 10 de noviembre de 2016

INECUACIONES CUADRÁTICAS

DESIGUALDADES CUADRÁTICAS EN UNA VARIABLE 
Se define una desigualdad cuadrática y se explica la técnica de los signos para resolver desigualdades no lineales. Se mencionan las dos estrategias para determinar el signo de los factores en cada intervalo. Se desarrolla un ejemplo en que se determina los signos de los factores tomando valores de prueba.




Ejercicios para después del video
1)
 Resuelva cada desigualdad 
     a)  (x-1)(x+2)>0                  b) (2x-1)(x+4)<0



EJEMPLO DE RESOLUCIÓN DE UNA DESIGUALDAD CUADRÁTICA
Se resuelve una inecuación cuadrática empleando el método de los signos. Los signos de los factores se determinan tomando valores de prueba dentro del intervalo. 



Ejercicios para después del video
1)
 Resuelva las siguientes desigualdades:

 a) x2+2 x-3>0;   b) (x+2)(x+3) +3(x+2)<0;   c) 3x2 >2x2+5x+6   

PROBLEMAS CON INECUACIONES


Planteamiento y resolución Para resolver un problema con inecuaciones debemos seguir los siguientes pasos: 


  1. Asignación de variables: poner nombre a los términos desconocidos. 
  2. Planteamiento: establecer relaciones entre los datos conocidos y los desconocidos, planteando una o varias inecuaciones (de primero o de segundo grado, con una o con varias incógnitas). 
  3. Resolución: de entre los métodos explicados aplicar el que se ajuste a nuestro planteamiento. 
Problema 01 
Lorena tiene 20 años menos que Andrea. Si las edades de ambas, suman menos de 86 años.  ¿Cuál es la máxima edad que podría tener Lorena?
A) 22     B) 28      C) 30      D) 32     E) 52 




Problema 02 
Si al doble de la edad  de Mirtha  se le resta  17 años, resulta menos de 35, pero si a la mitad de la edad de Mirtha se le suma 3 el resultado es mayor que 15. Mirtha, tiene:

A) 13      B) 25      C) 29      D) 28      E) 15




Problema 03
Karla va al teatro con todos sus hermanos y dispone de S/.22 para las entradas. Si compra entradas de S/.3, le sobra dinero; pero para comprar entradas de S/.3,5 le faltaría dinero. El número de hermanos de Karla es: 

A) 7      B) 5      C) 8      D) 4      E) 6




Problema 04 
Ana y Beatriz preparan pasteles. Si el triple de lo que prepara Ana más lo de Beatriz es mayor que 51 y, si además el doble de Ana menos lo de Beatriz es 24, ¿Cuál es la cantidad mínima de pasteles que pueden hacer juntas?

A) 21B) 23C) 24D) 25E) 28



Problema 05 
Un número natural es tal que la sexta parte del número anterior es menor que 6; además la sexta parte del  número natural siguiente es más que 6. ¿Cuál será la raíz cuadrada del número natural, disminuido en 1?

A) 6B) 5C) 4D) 12E) 36




Problema 06 
Si en medio kilogramo de manzanas se puede tener de 4 a 6 manzanas, ¿cuál es el menor peso que puede obtenerse con 9 docenas de ellas?
A) 9,5 kgB) 18 kgC) 13,5 kgD) 9 kgE) 8 kg



Ejercicios para después del video


  1. Se tiene un presupuesto de 300 soles para comprar dos tipos de queso. El queso A cuesta 7 soles el kilo, el queso B cuesta 4 soles el kilo. ¿Cuántos kilos como máximo hay que comprar de tipo A para no exceder el presupuesto, si se impone la condición que la cantidad a comprar del tipo B sea el doble que la cantidad a comprar de tipo A?

Respuestas: No más de 20 kilos




BIBLIOGRAFÍA
http://profe-alexz.blogspot.pe/2012/11/problemas-resueltos-de-inecuaciones.html
http://examen-admision-san-marcos.blogspot.pe/2013/05/problema-de-aplicacion-de-inecuaciones.html

sábado, 5 de noviembre de 2016

INECUACIONES

INECUACIONES

I.  CONCEPTO

Las inecuaciones de primer grado con una incógnita son aquellas que pueden ponerse en la forma ax+b < 0 (*), siendo a y b números reales y a0. 

(*) Puede ser cualquier otra desigualdad: >, ≤ ó ≥. Si fuese a=0 entonces nos quedaría la desigualdad numérica b < 0 que sería siempre cierta o siempre falsa según fuese el signo de b.

El Conjunto solución es el conjunto de números reales que cumplen con la verificación de la proposición de desigualdad dada.







Ejercicios para después del video realizar en el cuaderno de practica


1)
 Dada la desigualdad 3x-1 > 5x-3, diga cuáles de los siguientes números es solución. Justifique en cada caso.
a) 3                b) –7                     c) 10                    d) 0 


2) Grafique las siguientes desigualdades en la recta real y escriba el conjunto solución en términos de intervalos
    

a) -3 < x < 5                               b) 3 < x 

3) Diga, de manera verbal, el conjunto solución de la desigualdad 3 > x > -2. Grafique la desigualdad en la recta real y escriba el conjunto solución en la notación de intervalos


II. PROPIEDADES DE LAS INECUACIONES: 

A. LEY ADITIVA Y MULTIPLICATIVA

Se expone la ley aditiva, mostrando ejemplos numéricos en que se visualiza que la ley se cumple. Luego, se muestra cómo esta ley ayuda a resolver inecuaciones. Se justifica cómo la regla es aplicada en la práctica de una manera más versátil, transponiendo términos. Se establece la primera parte de la ley multiplicativa.



Ejercicios para después del video realizar en el cuaderno de practica

4) Resolver las siguientes inecuaciones aplicando las propiedades estudiadas, dar la inecuación equivalente.

    a) x-3 > 4                    b) 5x+2 < 4x -6              c) 6x + 2 > x  + 3/4



B. NÚMEROS NEGATIVOS Y LA PROPIEDAD MULTIPLICATIVA

Este video continua con las propiedades de desigualdades, discutiendo la segunda parte de la ley multiplicativa y viendo cómo ella ayuda a resolver desigualdades. Se comentan operaciones que deben ser evitadas al resolver desigualdades. Finalmente se establece una lista de operaciones que producen desigualdades equivalentes. 




Ejercicios para después del video realizar en el cuaderno de practica

5) 
Lleve cada desigualdad a otra equivalente en que la solución sea evidente (x < a, x > a ó con desigualdad no estricta).
   



III.  EJERCICIOS DE APLICACIÓN


EJEMPLO 1:


Procedimiento a seguir para resolver inecuaciones de primer grado o lineales, a continuación se hace una breve definición, las propiedades y la forma de expresar el conjunto solución de una inecuación: forma simbólica (Intervalos) , gráfica (Recta numérica) y conjuntista.



Ejercicios para después del video,  realizar en el cuaderno de practica
6) 
Resuelva cada desigualdad 


Respuestas
EJEMPLO 2:

Se muestra un ejemplo de cómo se resuelve una desigualdad lineal en una variable que contiene fracciones usando los pasos recomendados.



Ejercicios para después del video,  realizar en el cuaderno de practica

7) 
Resuelva las siguientes inecuaciones

Respuestas


EJEMPLO 3: 


DESIGUALDADES DE PRIMER GRADO QUE SE REDUCEN EN OTRA SIN VARIABLE

Son desigualdades equivalentes a otras en que la variable no aparece. El conjunto solución es el conjunto de todos los reales ó el conjunto vacío.




EJEMPLO 4: 





 Realizar en el cuaderno de practica


IV. DESIGUALDADES DOBLES

Es una desigualdad que tiene la siguiente expresión: a < cx + d y cx + d < b
Se pueden resolver ambas desigualdades y luego determinar la parte común de ambos conjuntos solución. Pero en general, es preferible resolverla simultáneamente. Ambos procedimientos lo ilustraremos en los siguientes ejemplos:




EJEMPLO 1: Resolver: -2 < 7x - 13 <= 15 



EJEMPLO 2: Resolver  una inecuación con denominadores

 


EJEMPLO 3: Resolver la inecuación doble con la variable en los tres miembros





EJEMPLO 4: Resolver la inecuación con la variable en cada miembro.





Ejercicio para después de los vídeos, resolver en su cuaderno de practica.

Resuelva cada desigualdad:


RECUERDA LA TERCER SEMANA DE NOVIEMBRE PRACTICA CALIFICADA DE ESTE TEMA ... A ESTUDIAR!!!!!

BIBLIOGRAFÍA

http://matematicatuya.com/DESIGUALDADES/S1.html
http://profe-alexz.blogspot.pe/2012/11/desigualdad-doble-ejercicios-resueltos.html

INECUACIONES I

I.  CONCEPTO

Las inecuaciones de primer grado con una incógnita son aquellas que pueden ponerse en la forma ax +b < 0 (*), siendo a y b números reales y a diferente de 0.

(*) Puede ser cualquier otra desigualdad: >, <=, >=. Si fuese a=0 entonces nos quedaría la desigualdad b<0 que sería siempre cierta o siempre falsa según fuese el signo de b.

El Conjunto solución es el conjunto de números reales que cumplen con la verificación de la proposición de desigualdad dada.






Ejercicios para después del video realizar en el cuaderno de practica


1)
 Dada la desigualdad 3x-1 > 5x-3, diga cuáles de los siguientes números es solución. Justifique en cada caso.
a) 3                b) –7                     c) 10                    d) 0 


2) Grafique las siguientes desigualdades en la recta real y escriba el conjunto solución en términos de intervalos
    

a) -3 < x < 5                               b) 3 < x 

3) Diga, de manera verbal, el conjunto solución de la desigualdad 3 > x > -2. Grafique la desigualdad en la recta real y escriba el conjunto solución en la notación de intervalos




II. PROPIEDADES DE LAS INECUACIONES :

A. LEY ADITIVA Y MULTIPLICATIVA

Se expone la ley aditiva, mostrando ejemplos numéricos en que se visualiza que la ley se cumple. Luego, se muestra cómo esta ley ayuda a resolver inecuaciones. Se justifica cómo la regla es aplicada en la práctica de una manera más versátil, transponiendo términos. Se establece la primera parte de la ley multiplicativa.



Ejercicios para después del video realizar en el cuaderno de practica

4) Resolver las siguientes inecuaciones aplicando las propiedades estudiadas, dar la inecuación equivalente.


a) x-3 > 4                b) 5x+2 < 4x -6              c) 6x + 2 > x  + 3/4




B. NÚMEROS NEGATIVOS Y LA PROPIEDAD MULTIPLICATIVA

Este video continua con las propiedades de desigualdades, discutiendo la segunda parte de la ley multiplicativa y viendo cómo ella ayuda a resolver desigualdades. Se comentan operaciones que deben ser evitadas al resolver desigualdades. Finalmente se establece una lista de operaciones que producen desigualdades equivalentes. 




Ejercicios para después del video realizar en el cuaderno de practica

5) 
Lleve cada desigualdad a otra equivalente en que la solución sea evidente (x < a, x > a ó con desigualdad no estricta).
   



EJEMPLO 1:


Procedimiento a seguir para resolver inecuaciones de primer grado o lineales, a continuación se hace una breve definición, las propiedades y la forma de expresar el conjunto solución de una inecuación: forma simbólica (Intervalos) , gráfica (Recta numérica) y conjuntista.





Ejercicios para después del video,  realizar en el cuaderno de practica
6) 
Resuelva cada desigualdad 



Respuestas








EJEMPLO 2:

Se muestra un ejemplo de cómo se resuelve una desigualdad lineal en una variable que contiene fracciones usando los pasos recomendados.






Ejercicios para después del video,  realizar en el cuaderno de practica

7) 
Resuelva las siguientes inecuaciones


Respuestas


EJEMPLO 3: 


DESIGUALDADES DE PRIMER GRADO QUE SE REDUCEN EN OTRA SIN VARIABLE

Son desigualdades equivalentes a otras en que la variable no aparece. El conjunto solución es el conjunto de todos los reales ó el conjunto vacío.





EJEMPLO 4: 





 Realizar en el cuaderno de practica


Es una desigualdad que tiene la siguiente expresión: 
a < cx + d y cx + d < b

Se pueden resolver ambas desigualdades y luego determinar la parte común de ambos conjuntos solución. Pero en general, es preferible resolverla simultáneamente. Ambos procedimientos lo ilustraremos en los siguientes ejemplos:




EJEMPLO 1: Resolver: -2 < 7x - 13 <= 15 



EJEMPLO 2: Resolver  una inecuación con denominadores

 

EJEMPLO 3: Resolver la inecuación doble con la variable en los tres miembros





EJEMPLO 4: Resolver la inecuación con la variable en cada miembro.





Ejercicio para después de los vídeos, resolver en su cuaderno de practica.

Resuelva cada desigualdad:




BIBLIOGRAFÍA

http://matematicatuya.com/DESIGUALDADES/S1.html
http://profe-alexz.blogspot.pe/2012/11/desigualdad-doble-ejercicios-resueltos.html